

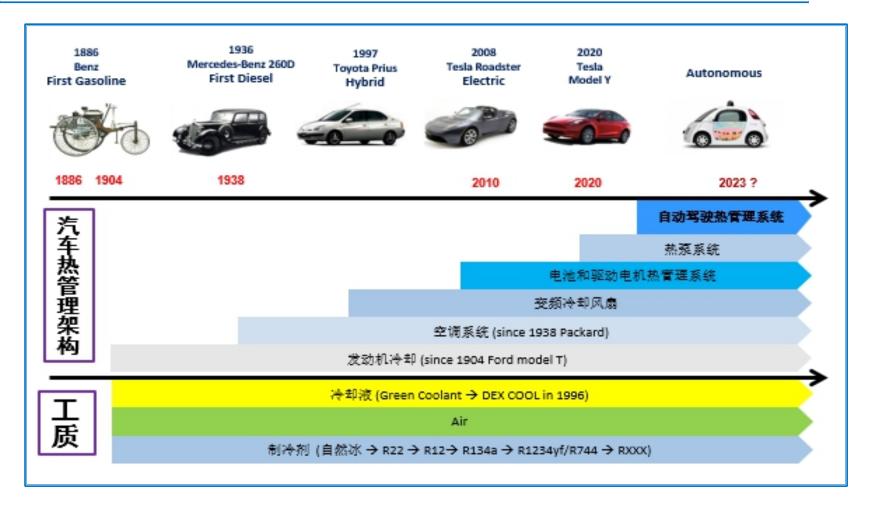
⋈ www.aotecar.com

新能源汽车热管理用电动压缩机发展 陈祥吉

南京奥特佳新能源科技有限公司 2021年4月8日

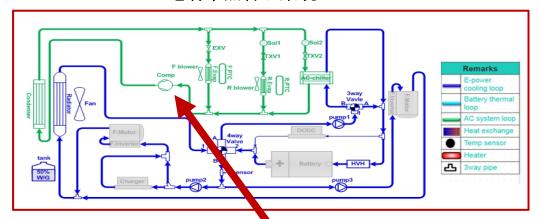
主要内容

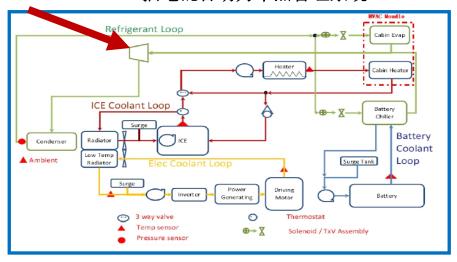
> 新能源汽车电动空调压缩机概况


> 新能源汽车电动空调压缩机技术现状

> 新能源汽车电动压缩机的技术展望

口汽车热管理技术发展




□典型的EV/PHEV热管理系统

EV电动车热管理系统

电动压缩机

PHEV插电混合动力车热管理系统

□电动车空调电动压缩机技术条件

> 高效率、低噪声、轻量化、小型化

- 受续航里程的制约,要求各部件运行高效节能并采用小型、轻量化设计
- 新能源汽车没有发动机噪声源,整体噪声比传统燃油车低,整车NVH要求高

> 适应更严苛的运行条件、更宽广的运行范围

- 采用小排量、高转速的设计理念
- 运行转速范围600~8500 rpm(短期最高10000rpm)
- 满足制冷和制热工况要求
- 满足-20~125℃运行环境,达到车规级的技术要求

> 高安全性和可靠性

- 更高EMC标准,
- 对控制器硬件设计提出更高技术要求
- 集成了热泵、动力电池冷却及加热、电池快充等更多功能

口车用电动压缩机技术条件

传统离合器压缩机

大排量满足怠速舒适转速的大排量为机变化大 转速随边机变化大 能放于, 能放于, 能放于, 的一个 大体和 大体和 大体和 大体和 大体和 大体和 大体和 大体和 大体和

车用电动压缩机

根据负荷选择合适排量

工况较稳定 变频调速 高能效比 抗振要求高 耐高温 120℃ 快速制冷 大压差启动 体积小 重量轻 高电压, 电气安全 运行电压范围宽 EMC要求高 电机能量密度大 转子退磁温度高 IP67等级

家用变频压缩机

根据负荷选择合适排量 工况较稳定 变频调速 高能效比 抗振要求低 满足50℃高温 3分钟启动 平衡压力启动 体积大 重量大 高电压供电,电气安全 电压范围小 电磁环境较好 电机能量密度小 转子退磁温度低

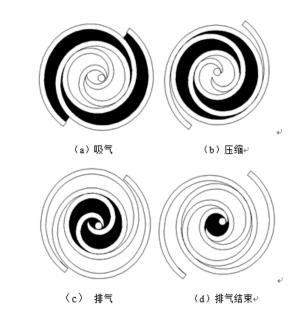
产品设计满足车规,系统设计参考家用空调

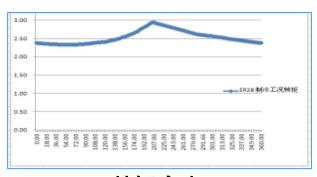
□当前以涡旋式结构形式为主

> 容积效率高(无吸气阀、无余隙)

涡旋式: 90²98%
活塞式: 65²75%

> 运转平稳, 转矩脉动小


• 多腔连续工作


> 可靠性高

- 运动部件少
- 动静盘相对速度小0.4-0.8m/s
- 最高转速: 10000rpm

▶ 噪音低,振动小

• 惯性力小(旋转半径小)

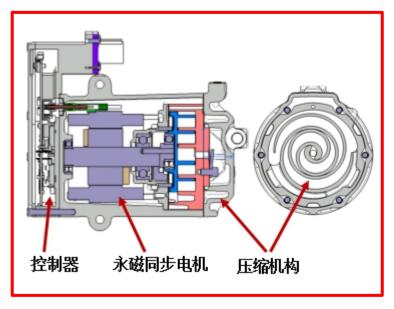
转矩脉动

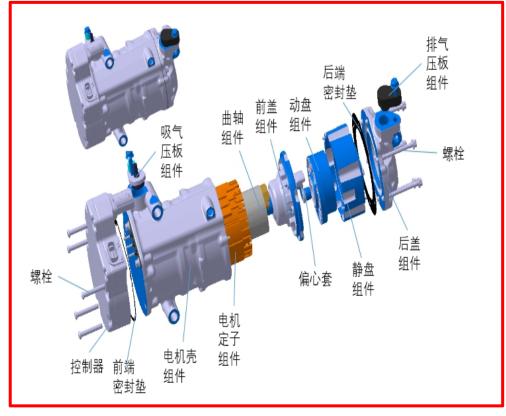
> 国内

• 2000年开始研发,2014年小规模的产业化

中国品牌取得很大进步,整体实力与国际水平仍 有差距

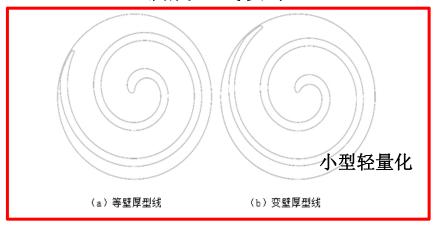
> 国际


• 日本早在20世纪70年代


□新能源汽车电动空调压缩机技术现状

- ◆ 集成一体式
- ◆ 控制器吸气冷却
- ◆ 变频调速
- ◆ 高速小型化
- ◆ 涡旋式为主

□ 主要技术参数


名称		单位/其他	基本参数	
	排量	cc/rev	27	34
转	速范围	rpm	800~8500	800~8500
工作	温度范围	${\mathbb C}$	-20~125	−20~125
	高压	V	200~500	200~500
	低压	V	8~16	8~16
	通信	_	LIN /CAN	LIN/CAN
故	障诊断	诊断	UDS/OBD (Lin)	UD S/OBD (Lin)
软	件更新	远程	Yes(Lin)	Yes(Lin)
		等级	IP67 IP67	
#	訓冷剂	类型	R134a/R1234yf R134a/R1234y	
润滑油		类型	POE/PVE	
4.5/0.000	制冷量	kW	6	8
1.5/0. 3MPa	COP	kW/kW	≥2.1	≥2.1

口 一些关键技术

涡旋型线设计

动盘防自转机构

涡旋盘表面处理

永磁同步电机

口 一些关键技术

动静涡旋径向密封

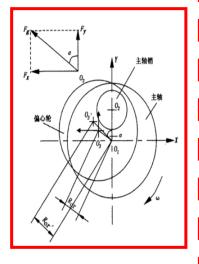
- 01 曲轴中心
- 02 曲柄中心
- 03 动盘(偏心套)中心 动盘回转半径01-03

动盘(偏心套)在曲柄销驱动 下

产生惯性力绕02运动, 将动盘推向静盘壁,实现径向 密封

特点: <mark>径向柔性密封</mark>技术, 涡旋压缩机普遍采用的技术

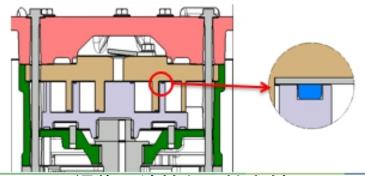
好处:


- 1)容易消除动盘、静盘径向间隙
- 2)容隙能力,当小颗粒固体,可变

的回转半径使动静盘分开提 供脱离间隙

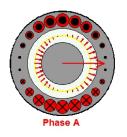
3) 提高抗液击能力, 当液体压缩时,

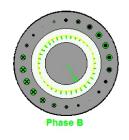
动静盘可脱离卸液体压力

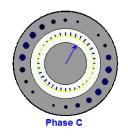

偏心机构原理

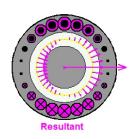
动静涡旋轴向密封

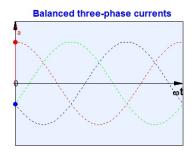
背压轴向柔性密封

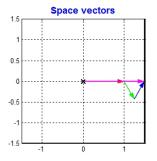


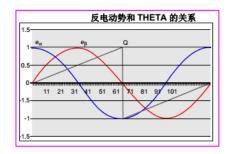

涡旋顶端轴向柔性密封



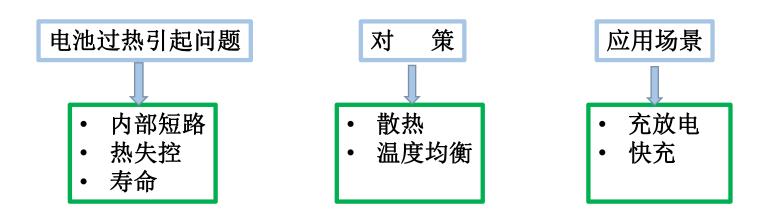






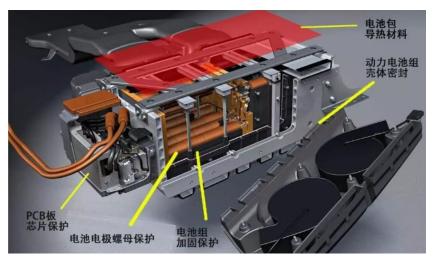


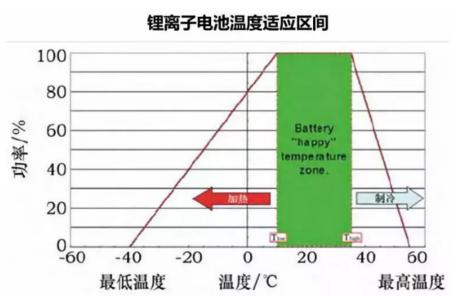
 $V_s = R^*i_s + L^*di/dt + e_s$


□压缩机技术发展主要因素

- ▶续航里程增加、高性能纯电动SUV
- > 电池热管理+电池快充
- > 冬季采暖的节能要求
- > 无人自动驾驶技术发展
- > 低温制热环保制冷剂

□电池热管理对压缩机的影响


对压缩机技术主要影响:


• 电池散热需要压缩机提供额外制冷量,增加压缩机排量

□电池热管理对压缩机的影响

对压缩机技术主要影响

- 功能安全要求
- 超级电脑电子散热需要压缩机提供额外制冷量,增加压缩机排量

□电池快充技术对压缩机的影响

电动汽车快充


- 充电电流大于1.6C
- 从0%充电到80%时间小于30分钟的技术

C指的是充电倍率:

1C: 60分钟;

2C: 30分钟;

4C: 15分钟。

□电池快充技术对压缩机的影响

	当前充电	当前快充	未来快充
电池电量	1~1.2C 需要冷却	2C 快充需要冷却	4C 快充需要冷却
60度电	2.5kw	5 kw	 I
70度电	3kw	l 6 kw	?
80度电	5kw	l /	I I
90度电	7kw	/	! !
			<u>'</u>
	34cc压缩机满足	考虑乘员仓,增加排量	

□冬季采暖对压缩机技术的影响

冬季采暖能耗问题

<u>电加热</u> (PTC)

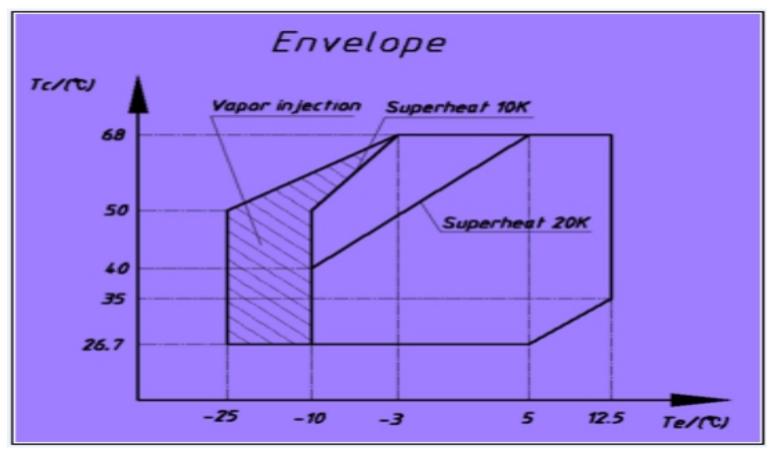
- 能耗高,
- <u>冬季续航能</u> <u>力下降</u>
- 30%~40% •<u>若考虑电池</u> 热管理下降

<u>50%</u>

热泵+PTC

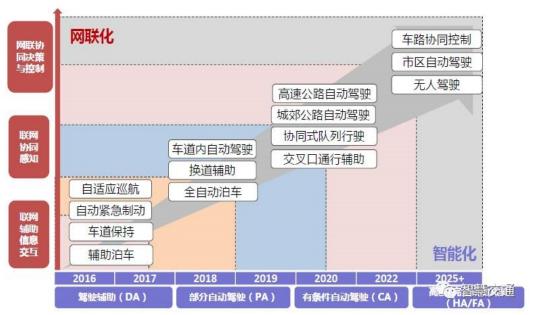
•<u>由于受压</u> 缩机技术 制约,

•<u>−10°C以下</u> 低环温仍 采用PTC


低温热泵

- 热泵能耗 PTC的30%,
- 需要满足
 -20℃或更
 低环温正
 常使用

□ 空调压缩机运行范围需要扩大

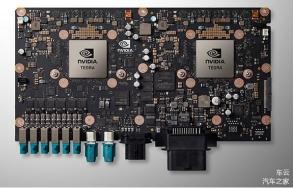


□自动驾驶对压缩机的影响

Autonomous

智能网联乘用车里程碑

图片来自百度



□ 无人自动驾驶芯片散热需求

夏天,车内温度可以达到四五十度 计算平台热量叠加器件的温度达到100-200度

问题:轻则发烫,重则烧坏,进而导致系统"死机"。

自动驾驶分级				主体			
NHTSA	SAE	称呼 (SAE)	SAE定义	驾驶操作	周边监控	支援	系统作用域
0	0	无自动化	由人类驾驶者全权操作汽车,在行驶过程中可以得到警告 和保护系统的辅助。	人类驾驶者	人类	1	无
1	1	驾驶支援	通过驾驶环境对方向盘和加减速中的一项操作提供驾驶支援,其他的驾驶动作都由人类驾驶员进行操作。	人类驾驶者 系统	× 25 25	人类加	
2	2	部分自动化	通过驾驶环境对方向盘和加减速中的多项操作提供驾驶支援,其他的驾驶动作都由人类驾驶员进行操作。		者	驾驶	άg
3	3	有条件自动化	由无人驾驶系统完成所有的驾驶操作。根据系统请求,人 类驾驶者提供适当的应答。				分
4	4	高度自动化	由无人驾驶系统完成所有的驾驶操作。根据系统请求,人 类驾驶者不一定需要对所有的系统请求作出应答,限定道 路和环境条件等。	統	系统	系	
	5	完全自动化	由无人驾驶系统完成所有的驾驶操作。人类驾驶者在可能 的情况下接管。在所有的道路和环境条件下驾驶。			170	全域

芯片

→ 功率 300~500W

→ 功率 1.5~2.5kW 2022年

□ 环保制冷剂对电动压缩机的影响

◆环保法规

• ODP & GWP<150

◆安全性

• 毒性,可然性

◆化学特性

- 材料相容性、润滑油互溶性
- 导热&放热、密度&粘度

◆热力学特性

- 循环效率、单位容积制冷量
- 压力适中、临界温度高
- 沸点
- 传统燃油车选择什么制冷剂?
- HFO-R234yf

毒性 可燃性	低毒性	高毒性
高度可燃性	A3	B3
低度可燃性	A2	B2
无火焰传播	A3	B1

- 考虑低温制热性能;
- 兼顾高温制冷工作压力
- 兼顾纯电和PHEV

- ▶ 热泵会选择什么制冷剂?
- CO2
- R290
- R32 (GWP=675)?

□ 车用低温热泵制冷剂可能性

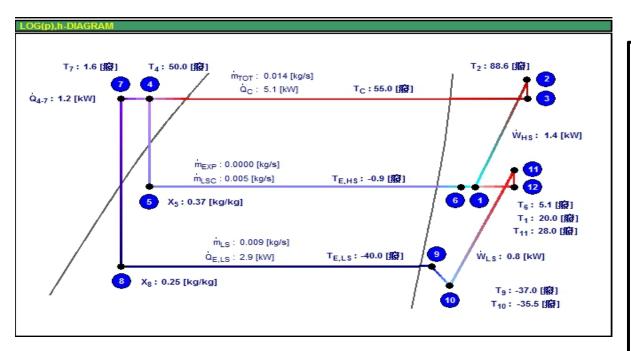
▶ 如何实现-30℃环境高效制热?

制冷剂	环保	指数	安	全性	沸点	临界温度		未来车用热泵	.
	ODP	GWP	等级		ů	ď	是否受控物质	应用	备注
要求	0	<150						ĽΠ	
R134a	0	1430	A1	不可然	-26.16	101.1	γ	-20℃热泵过渡	
R1234yf	0	4	A2L	弱可然	-29.5	94.7	N	-20℃热泵	HFO
R410a	0	2090	A1	不可然	-51.5	72.5	Y	X	R32/R125 blend 高GWP
R32	0	675	A2L	弱可然	-51.7	78.4	γ	-30℃热泵过渡	
R454B	0	466	A2L	弱可然	-50.9	77	γ	X	HFO:R32/R1234yf blend
R407C	0	1770	A1	不可然	-43. 8/-36. 7	86.7	Y	X	R32/R125/R134a blend 高GWP,温度滑移大
R454C	0	148	A2L	弱可然	-46	82	N	-30℃热泵??	HFO:R32/R1234yf blend
R290	0	3	A3	高可然	-42.1	96.7	N	-30℃热泵??	
R744	0	1	A1	不可然	-78.5	31	N	-30℃热泵最终	
其它								-30℃热泵最终	新研发中??

中国新能源汽车热管理技术发展(征求意见稿)

4.5 制冷剂的未来发展建议。

我国汽车空调领域未来的制冷剂替代发展路线目前尚未明确,上述几种替代方案均存在各自的优势和局限,未来的替代发展路线目前还无法确定,建议充分发挥各种制冷剂自身优点,应用于各自的优势领域。4

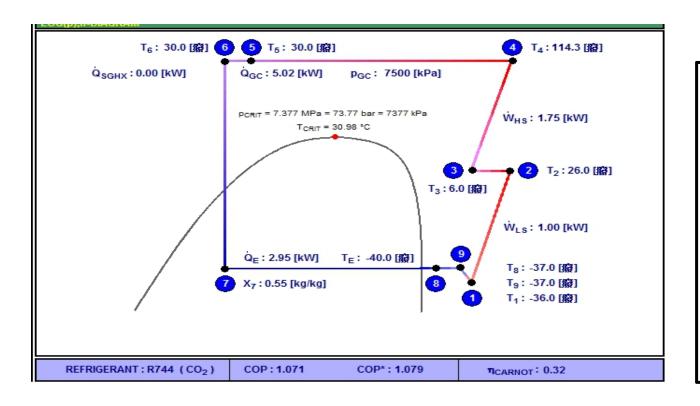

- (1) R1234yf 几乎可以直接替代 R134a 系统,在新一轮低 GWP 制冷工质替代前期将 占明显优势,其居高不下的价格是制约发展的主要因素,降低成本才能促进其产业应用发展。44
- (2) CO₂ 具有优异的低温制热性能,能完全满足汽车车室冬季供暖需求,且环保性优异,是一种较为理想的替代方案,从结构改进和技术升级等方面提升其高温制冷性能并推进 其零部件供应链条的产业化,是促进其发展的关键。↩
- (3) R290 具有良好的制冷制热综合性能,但是易燃易爆特性严重限制其在新能源汽车 领域的使用,目前亟需建立健全相关可燃性工质安全应用法规,并从降低充注量或构建二次 循环等角度入手提升其安全性能,R290 才能在新能源汽车热管理领域迎来良好发展。

注: 2021年"中国制冷学会"与"中国汽车工程学会"牵头编制

□ R290系统对应-30℃环境制热仿真

■ R290 排气温度比R410a 低大约30℃,质量流量约为R410a 的65%.

压缩机: 27cc VPI n=8500rpm 工况: 蒸发温度 -40°C 冷凝温度 55°C 制热量Qh≈5.1kw 功率≈ 2.2kw


◆ 按优化设计仿真

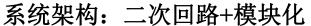
 $COP \approx 2.3$

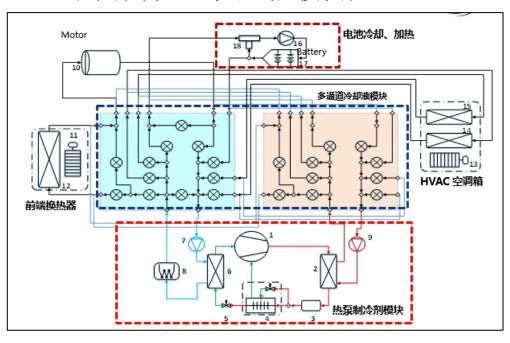
□ R744 (CO2)系统对应-30°C环境制热仿真

压缩机: 6 cc n=8500rpm

工况: 蒸发温度 -40℃ 排气压力 75 bar

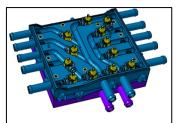
制热量Qh≈5.kw 功率≈ 2.75kw COP≈1.8




□新能源替代制冷剂存在的问题及解决思路

	CO2	R290
问题	• 跨临界高压力 • 高温工况效率	• A3 高可燃性 • 应用过程安全
解决思路	• 新密封技术 • 新制造工艺成本	二次回路系统控制制冷剂的安全充注量系统厂内制冷剂充注

□ R290模块化热泵



- 制冷剂充注小于150g,符合
 ASHRAE-34-2019及ICE60335-2-89
- 制冷机组在乘员仓外,避免工质进入乘员仓的安全隐患

多通道冷却液模块

热泵制冷剂模块

□新能源车电动压缩机技术路线图

排量	乘员舒适 27cc/8500rpm	乘员舒适电池热控	乘员舒适 电池+快充热控 c/8500rpm	乘员舒适 电池+快充热控 超级计算机热控 40+cc/8500rpm
	27cc/65001pm	33-340	T =	40+cc/83001pm
<u>电压</u>	< 450V	<600V	800V +	
	単冷	常规热泵	低温双级VPI热	三
<u>诊断</u>	单体诊断		UDS诊断	
 <u>软件升级</u>	无升级	boo	tloader	
	无要求		需求 ISC	26262
	2016以前	2017-2019	2020-2025	2025以后

谢谢 Thanks

南京奥特佳冷机有限公司 NANJING AOTECAR REFRIGERATING CO.,LTD.

地址:中国江苏省南京市大明路103号

ADD: No.103 of Daming road, Nanjing, Jiangsu Province of China

电话TEL: 86-25-52602600 传真FAX: 86-25-52600072

